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Abstract. The thermal behaviour of membranes—surfaces of nearly vanishing tension—
depends strongly on their internal state, which can be either fluid, crystalline (or polymerized), or
hexatic. Thermal fluctuations have a dramatic effect on the conformation and elastic properties
of membranes. We describe in this review both the continuum models of membranes which
are used for theoretical analyses as well as the network models employed in simulations. The
fruitful interaction between these two approaches, which has lead to recent progress in this field,
is emphasized. We summarize the essential results of recent research on fluctuating membranes;
in particular, the effects of bending rigidity, self-avoidance, attractive interactions, disorder,
topological defects and external compression forces are discussed in detail.

1. Introduction

Amphiphiles and lipids in aqueous solution self-assemble into a large variety of phases
(Gompper and Schick 1994, Gelbartet al 1995). The driving force for structure formation
in these systems is the hydrophobic effect—the hydrocarbon tail of an amphiphilic molecule
wants to avoid contact with water or the polar heads of other amphiphiles—together with
frustration—the polar head of an amphiphile is permanently linked to its tail, and cannot be
separated from it in space (Tanford 1980, Israelachvili 1992). There are two principal ways
to arrange amphiphilic molecules so that their hydrocarbon tails are shielded from water
contact by a shell of polar head groups: spherical or cylindrical micelles, and bilayers.
These structural elements can then assemble in different ways on larger length scales to
form thermodynamically stable phases, such as the lamellar phase or the cubic bicontinuous
gyroid phase (both of which are arrangements of bilayers).

In some cases, lamellar (Streyet al 1990) and cubic bicontinuous (Peteret al 1996)
phases can be swollen enormously by adding water to the system. Inter-membrane
separations on the order of several thousandångstr̈oms—which is much greater than a
typical bilayer thickness of some 10̊A—have been observed. Giant lipid bilayer vesicles
with a typical size of 10µm can also be made which are metastable over typical experimental
timescales; the relative stability of these vesicles is due to the extremely small molecular
solubility of the lipid molecules in water (Bloomet al 1991, Lipowsky and Sackmann 1995).
In all of these cases, the relevant degrees of freedom of the system are the local positions
of the amphiphilic bilayers—or membranes. The area of a membrane is determined by
a balance of the hydrophobic energy, which arises from local hydrocarbon–water contact,
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and head–head and tail–tail repulsion. Due to this self-adjustment of the membrane area,
shapes and fluctuations offluid membranes are controlled by the curvature energy (Canham
1970, Helfrich 1973, Evans 1974).

More generally, membranes are two-dimensional sheets of molecules different from
the medium in which they are embedded. Red-blood-cell cytoskeletons (Schmidtet al
1993, Elgsaeteret al 1986) provide an example of surfaces with fixed internal connectivity.
Because of the fixed connectivity, this class of membrane has a finite shear modulus, so
the shape and fluctuation spectra of these surfaces are controlled be a delicate interplay
between the bending energy and in-plane elastic energy. Other examples of crystalline (or
polymerized) membranes are graphite oxide sheets (Wenet al 1992, Spectoret al 1994)
and the surfaces of high-molecular-weight fullerenes (Lambet al 1992).

At sufficiently low temperatures, amphiphilic bilayer membranes freeze. When confined
to two dimensions, these surfaces exhibit quasi-long-range crystalline order, just like
polymerized membranes. However, if they are allowed to buckle out of the plane,
dislocations destroy the crystalline order at any finite temperature, resulting in a membrane
with hexaticorder (Nelson and Peliti 1987, Nelson 1996). The free energy and fluctuation
spectra of this class of membrane are different from those of either fluid or polymerized
membranes.

In this review, we attempt to summarize the essential results of recent research involving
continuum models and simulations of network models of fluctuating membranes. As a
consequence, we will mention work involving plaquette models defined on cubic lattices
only very briefly. A nice review of random-surface models from the viewpoint of a high-
energy physicist has appeared recently (Wheater 1994). Various related and complementary
aspects of the physics of membranes are discussed in the recent reviews by Nelsonet al
(1989), Helfrich (1990), Lipowsky (1991), Grest and Murat (1995), Lipowsky and Sackmann
(1995), Davidet al (1996) and Seifert (1997).

2. Continuum theory of membranes

Intermolecular interactions in membranes can be separated into two groups: (i) strong bonds
between neighbouring particles in the network; and (ii) weaker van der Waals, hydrogen-
bonding, and hard-core interactions between all of the particles in the network. The second
class of interactions becomes important when particles that are distant neighbours along the
membrane are actually close in real space.

2.1. Tethered networks

Consider first the contributions from the strong nearest-neighbour bonds that hold the
network together. For a coarse-grained description of the network, the positionsri of
the individual particles are replaced by a coarse-grained average coordinate vectorr(x)
which is a function of the continuousinternal coordinatex of particles in the network.
The externalcoordinater is the coarse-grained average of the positions of particles in the
vicinity of point x in the network.

The form of the Landau–Ginzburg free-energy functional,F , which describes the
energy of an arbitrary configuration of the network, is dictated by symmetry considerations.
The basic symmetries are invariance with respect to translations and rotations. The
first implies that F can only depend on derivatives such as∂αr ≡ ∂r/∂xα and
∂α∂βr, while the second requires that all terms consist of scalar products of the form
∂αr · ∂βr. For an isotropic network, an expansion in powers of∂αr yields the free-energy
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functional (Paczuskiet al 1988)

F1 =
∫

dDx

[
t

2
(∂αr)

2+ u(∂αr · ∂βr)2+ v(∂αr · ∂αr)2+ κ
2
(∂2
αr)

2+ · · ·
]

(1)

whereD = 2, α = 1, 2 for membranes, and summation over repeated indices is implied.
The terms in equation (1) have simple physical interpretations. The first, with coefficientt ,
represents a Hookean elasticity, while the terms with coefficientsu andv are anharmonic
elastic terms. The last term is a bending energy that arises from bond-bending forces.
The coefficientκ is the bending rigidity. Both in-plane elasticity and bending rigidity are
macroscopic manifestations of the internal connectivity.

In the subsequent discussion, it is often useful to consider the generalization of
equation (1) toD-dimensional networks embedded ind-dimensional space. In this case,
r is a d-dimensional vector, andα = 1, 2, . . . , D. For example,D = 1 corresponds to a
linear molecule such as a polymer, and forD = 3, the model describes a gel. Non-integer
D might approximate fractal structures.

Because the entropy-generated elastic energy of the network is minimized when it has
a small sizeR in space, surface elements, or particles, that are distant neighbours along the
network backbone can be in close physical contact. Their interaction can then no longer be
ignored. At high temperatures, the particles only feel the hard-core interactions, which can
be described by an interaction potential of the form1

2b(T )
∫

dDx
∫

dDy δ(d)[r(x)− r(y)].
As in polymers, the coefficientb(T ) is related to the second virial coefficient in a solution
of such networks, and can change sign as a function of the thermodynamic fields, such
as temperature. Higher-order terms are then necessary to stabilize the system. Their
contribution,F2, to the free energy functional is (Paczuskiet al 1988)

F2 = 1

2
b(T )

∫
dDx1

∫
dDx2 δ

(d)[r(x1)− r(x2)]

+ c(T )
∫

dDx1

∫
dDx2

∫
dDx3 δ

(d)[r(x1)− r(x2)]δ
(d)[r(x2)− r(x3)].

(2)

The probability of a particular configuration of the network is determined by the free energy
F = F1+ F2.

The scaling behaviour can be studied using a Flory-type (mean-field) approximation.
Consider a network of linear dimensionL and letR be its size in space. InF1, we
approximate terms of the type∂αri by R/L, and

∫
dDx by LD. In F2, the fact that∫

ddR δ(d)(R) = 1 suggests approximatingδ(d)(R) by R−d . These estimates lead to the
free-energy estimate (Paczuskiet al 1988)

F ∼ tR2LD−2+ wR4LD−4+ κR2LD−4+ bL2D/Rd + cL3D/R2d (3)

wherew = u+Dv. Sinceb and t can change sign with temperature, the terms withc > 0
andw > 0 are necessary to ensure stability.

A detailed discussion of the predictions of this approach is provided by Paczuskiet al
(1988) and Nelson (1989). Here we only consider the most important cases.

2.1.1. The crumpled phase.Both t andb are positive at sufficiently high temperatures; in
this case, these two terms asymptotically dominate the rest. Minimizing equation (3) with
respect toR, one finds

R ∼ (b/t)1/(d+2)L(D+2)/(d+2). (4)
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This corresponds to acrumplednetwork with a non-trivial fractal (or Haussdorf) dimension.
Generally, a scaling exponentν defined by the relation

R ∼ Lν (5)

is used to characterize the extent to which aD-dimensional network is crumpled in the
d-dimensional embedding space. Alternatively, one can use the fractal dimensiondf which
relates the mass (∼LD) of the network to its spatial extent:

LD ∼ Rdf (6)

to characterize the conformation. The relationship between these two exponents isν =
D/df . The Flory estimate (4) forν in this case is, therefore,

νf = (D + 2)/(d + 2) (7)

and

df = (d + 2)D

(D + 2)
. (8)

2.1.2. The flat phase.Result (4) indicates thatR diverges fort → 0. For t < 0, the
anharmonic termwR4Ld−4 is needed for stability. The competition between these two
terms leads toR ∼ |t |1/2L, which clearly describes an expandedflat phase.

2.1.3. The compact, collapsed phase.Equation (4) also predicts thatR→ 0 asb→ 0. In
this case, the three-body interaction withc > 0 is required for stability. It follows that

R ∼ (c/|b|)1/dLD/d (9)

for b < 0. This corresponds to acompact, or collapsed, structure. Although this compact
structure minimizes the free energy, it is not clear that it is dynamically accessible. In
addition, the competition between the attractive and repulsive inter-particle interaction can
no longer be ignored, and the configuration landscape could be quite complicated.

2.1.4. The crumpling transition.The transition att = 0 between the flat and the crumpled
phases is called thecrumpling transition. Assuming that bothb andw are positive, one
finds that

R ∼ (b/w)1/(d+4)Lνc

with νc = (D + 4)/(d + 4) at the transition. Paczuskiet al (1988) have shown that the
distinct scaling forms in the vicinity of the crumpling transition can be combined into a
single homogeneous scaling function

R ∼ Lνc9(tLy)
where9(0) = constant and9(x) → |x|φ± for x → ±∞, with y = 2(d − D)/(d + 4),
φ− = 1/2, andφ+ = −1/(d + 2). While different crossover exponentsy+ andy− cannot
be ruled out in general, they are the same in the present mean-field analysis.
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2.1.5. Phantom networks and the influence of self-avoidance.Finally, if we ignore the
interaction terms inF2 and assumet > 0, we have what is commonly called aphantom
membrane in which the configurational free energy is determined by a network of Hookean
springs which is allowed to self-intersect. This model is exactly soluble, and it is easy to
see that

R ∼
{
L(2−D)/2 for D < 2

{ln(L)}1/2 for D = 2.
(10)

For D > 2, fluctuations are too weak to prevent the complete collapse of the network.
Result (10) can also be obtained by either requiring that the Hookean term in equation (3),
R2LD−2, is of order one, or by dimensional analysis of the Gaussian free-energy functional.
Assume now thatR scales as in equation (10), and consider the scaling behaviour of the
interaction term proportional tob in F2. One finds that this term scales as

L2D/Rd ∼ L2D−d(2−D)/2. (11)

The exponent on the right-hand side of this equation vanishes at theupper critical dimension
(Kardar and Nelson 1987, Duplantier 1987, Aronowitz and Lubensky 1987),

duc = 4D/(2−D). (12)

This term isirrelevant, i.e. it scales to zero in the limit of large system sizes ifd > duc;
the scaling behaviour of the network is not changed by self-avoidance in this case. For
polymers (D = 1), duc = 4. For numbers of dimensions greater than four, the conformation
of a polymer is therefore described by the random-walk exponentν = 1/2. For d = 3,
the Flory result (7) is an excellent approximation to the true scaling behaviour. For two-
dimensional tethered networks, however, self-avoidance can only be neglected whend = ∞,
in agreement with the fact that the fractal dimension of the non-interacting surface is infinite
(Gross 1984). In view of this result, and the quality of the Flory approximation for polymers,
one might expect that expression (4), withD = 2, would provide a reasonably accurate
description of the scaling behaviour of self-avoiding tethered networks. As we shall see
later, this is not the case. It is worth noting that if we assume the Flory scaling relation (4),
n-body interactions arerelevantfor

d <
2nD

2(n− 1)−D. (13)

For polymers, it follows that three-body interactions are relevant only for dimensionsd < 2.
In contrast, forD = 2, three-body terms are relevant below six dimensions, and four-body
terms are relevant below four dimensions. In fact, ford = 3, three-, four-, and five-body
interactions are all relevant, and six-body terms are marginal. All of these interaction terms
can be expected to influence the scaling behaviour of the surface ford = 3 and need to be
treated self-consistently (Hwa 1990, Grest 1991).

2.1.6. Polymeric fractals. Polymers and tethered membranes are special cases of more
generalhomogeneousmanifolds characterized by the parameterD. In view of the drastic
differences between the conformation and phase behaviour of polymers (D = 1) and
membranes (D = 2), it would be extremely useful to have realizations of networks
characterized by 1< D < 2. While not homogeneous, regularly connected fractal networks
(or polymeric fractals) are useful generalizations to consider (Cates 1984, Grest and Murat
1990, Levinson 1991, Grest and Murat 1995). These networks are characterized by a spectral
dimension (Alexander 1982),ds , which describes the intrinsic connectivity of the network,
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and in many ways plays the role ofD. Examples of polymeric fractals include linear
polymers, swollen gelation/percolation clusters generated near the percolation threshold,
Sierpinski gaskets, and branched polymers.

The spectral dimension can be defined in terms of the low-energy scaling behaviour of
the density of states,N (E) ∼ Eds/2−1, of the Laplacian on the fractal. It also relates the
mean square displacement in the embedding space of a random walk on the fractal to the
time t (Gefenet al 1983),

〈|r(t)− r(0)|2〉 ∼ tds/df (14)

wheredf is the fractal dimension of the network.
The mean-field analysis of the previous subsections can be easily extended to polymeric

fractals. For a fractal generated on a lattice, the lattice fractal dimensiondf l relates the linear
lattice sizeL0 to the total number of nodes,N , by (Cates 1984)

N ∼ Ldf l0 . (15)

Replace now every bond in the fractal by an identical section of ideal phantom polymer
chain, and allow the network to relax off the lattice. This is the polymeric fractal. In
general, the network will have a new internal sizeL; the relation betweenL andL0 follows
from simple mode counting: sinceLds ∝ N , it follows from equation (15) thatLds ∼ Ldf l0 .

ReplacingD by ds in equation (3), one finds, in analogy to equation (10), that for the
phantom polymeric fractal,R ∼ L(2−ds )/2 ∼ N(2−ds)/2ds , so the fractal dimension is (Cates
1984)

df0 = 2ds/(2− ds) (16)

and the upper critical dimension

duc = 4ds/(2− ds). (17)

Similarly, in the crumpled phases, fort > 0 andb > 0,

R ∼ (b/t)1/(d+2)L(ds+2)/(d+2) ∼ N1/df (18)

with

df = (d + 2)ds
(ds + 2)

(19)

in analogy with the result (8) forD-dimensional homogeneous manifolds. Flory theory
therefore implies that the fractal dimension of the crumpled polymeric fractal depends only
on the network connectivity, as described byds , and the spatial dimensiond. It follows
from equation (19) that Flory theory predicts thatn-body interaction terms are relevant for
d < 2nds/[2(n− 1)− ds ] (Grest 1991, Grest and Murat 1995).

2.1.7. Fluctuations and the crumpling transition.So far, we have not discussed the
influence of critical fluctuations on the crumpling transition. Paczuskiet al (1988) have
shown that there is a mean-field crumpling transition of the type described in section 2.1.4
for all D > Dc = 4. They treated critical fluctuations in an expansion in 4−D; for D . 4,
there is a second-order critical transition ford > dc(D) ≈ 219+ O(4 − D), while for
d < dc, there is a fluctuation-driven first-order transition. On the other hand, first-order
expansions in 1/d (David and Guitter 1988, Aronowitzet al 1989) suggest that the transition
is continuous. At the transition, 1/d expansions predict thatdf = 3. More recently, Le
Doussal and Radzihovsky (1992) used a self-consistent screening approximation to study
D-dimensional tethered networks embedded ind dimensions. The method is exact for large
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d to order 1/d, for anyd to orderε = 4−D, and ford = D. ForD = 2, d = 3, they find
df ≈ 2.73 at the crumpling transition.

The crumpling transition is analogous to transitions in magnetic systems with O(N)

symmetry; the normal vectors of the membrane are the analogue of the spins of the
magnetic system, and the dimensiond of the embedding space corresponds to the number
of componentsN of the spin vector. There is, however, a significant difference between
the present problem and O(N) magnetic systems: the lower critical dimension of tethered
membranes is less than two (Aronowitzet al 1989). A crumpling transition therefore occurs
here in a two-dimensional system despite the Mermin–Wagner theorem. The reason for this
breakdown of rotational symmetry is the existence of long-range forces mediated by phonons
(Nelson and Peliti 1987). A related feature of this system is that anharmonicities in the flat
phase lead to a breakdown of harmonic elasticity for all membrane dimensionsD less than
the upper critical dimensionDc = 4 (Aronowitz et al 1989).

2.1.8. Fluctuations about the flat phase.Fluctuations in the ordered, flat phase can be
studied in an expansion about the flat state by introducing in-plane phonon modesuα
(α = 1, . . . , D) and out-of-plane undulation modesha (a = D + 1, . . . , d) and setting
(Paczuskiet al 1988)

r(x) = m(xα − uα)eα + haea. (20)

The {eα} are a set of orthonormal in-plane basis vectors, and{ea} are a set of orthonormal
basis vectors in the subspace normal to the plane of the network. To leading order in
gradients ofuα andha, the free energy (1) reduces to

F =
∫

dDx

[
1

2
κ(∇2h)2+ µu2

αβ +
1

2
λu2

γ γ

]
(21)

whereuαβ = [∂αuβ + ∂βuα + ∂αh · ∂βh]/2 is the strain matrix, and the elastic constants are
µ = 4um4 andλ = 8vm4. Here and in the following, we measure all energies in units of
kBT .

Nelson and Peliti (1987) have shown that the long-range orientational order which occurs
in D = 2 networks at large bending rigidities is due to a long-range interaction between
local Gaussian curvatures mediated by transverse phonons of the crystalline membrane.
Using a simple one-loop self-consistent theory forD = 2, assumingnon-vanishing elastic
constants, they showed that phonon-mediated interactions between capillary waves lead to
a renormalization, or wavevector dependence of the bending rigidity of the form

κ(q) ∼ q−η (22)

with η = 1. The theory of fluctuations about the flat phase was extended by Aronowitz and
Lubensky (1988) to generalD andd. An ε = 4−D > 0 expansion confirmed that the flat
phase is described by non-trivial scaling behaviour, withκ(q) scaling as in equation (22),
but with anomalous, scale-dependent elastic constants

λ(q) ∼ µ(q) ∼ qω (23)

with ω > 0. It was also shown (Aronowitz and Lubensky 1988) that, as a consequence of
rotational invariance,

ω = 4−D − 2η. (24)

An explicit renormalization group calculation to first order inε ≡ 4−D yielded the result
η = 12(4− D)/(24+ d − D). For flat, planar networks (D = 2, d = 3) this implies
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η = 24/25 = 0.96. The Poisson ratio,σp = limq→0 λ(q)/[λ(q) + 2µ(q)], is predicted to
be universal, withσp = −1/5, independent of bothd andD.

More recently, Le Doussal and Radzihovsky (1992) used the self-consistent screening
approximation, and foundη = 4/(1+√15) ≈ 0.821 forD = 2 in three dimensions. This
is currently the most accurate theoretical estimate forη. The Poisson ratio is predicted to
be σP = −1/3.

The renormalized elastic constants enter an effective, long-wavelength free energy for
the Fourier-transformed phonon,u, and undulation,h, modes. For the physically relevant
caseD = 2, d = 3, u is a two-dimensional vector, andh is a scalar. The effective
free-energy functional for these modes is (Abraham and Nelson 1990b)

Feff =
∫

d2q

(2π)2
{κ(q)q4|hq |2+ µ(q)q2|uq |2+ [µ(q)+ λ(q)]|q · uq |2}. (25)

The size of the out-of-plane fluctuations in a network with a characteristic linear dimension
L is

〈h2(x)〉 ≈ 1

2π

∫ a−1

L−1

q dq

q4κ(q)
∼ L2ζ (26)

where ζ = 1− η/2 and a is a short-distance cut-off of the order of the lattice spacing
of the network. Similarly, the amplitudes of in-plane phonon fluctuations are given by
〈|u(x)|2〉 ∼ Lω.

The structure factor of an oriented tethered network is defined by (Abraham and Nelson
1990a)

S(qz, q⊥, L) = 1

N2

∑
x,x′
〈eiq·[r(x)−r(x′)]〉 = 1

N2

∑
x,x′
〈eiqz[rz(x)−rz(x′)]J0(q⊥|r⊥(x)− r⊥(x′)|)〉

(27)

where rz(x) is the network coordinate along the direction of the smallest eigenvalue of
the moment-of-inertia tensor andr⊥(x) is the corresponding perpendicular component; the
z-axis is aligned with the average normal to the surface. The brackets in equation (27)
denote both a thermal average and an average over directions perpendicular toz. For an
oriented membrane, it has been shown by Abraham and Nelson (1990a) that the structure
functionS(qz, 0, L) scales inqLζ for q . 1/a. For qz = 0, however, there is a breakdown
of scaling, and large in-plane phonon fluctuations causeS(0, q⊥, L) not to scale inq⊥L
over a wide range of intermediate wavevectors.

Many laboratory experiments on tethered membranes are carried out on unoriented
membranes. The scaling behaviour in this case has been analysed by Goulianet al (1992).
It was shown that the orientationally averaged structure factorS(q) ∼ 1/q2 for small q. If
the amplitudes of the longitudinal and transverse fluctuations are of the order of the inter-
monomer distancea, this result holds for allq � 1/a, andS(q) is indistinguishable from
the structure factor for a randomly oriented flat plate. If the amplitudes of the longitudinal
and transverse fluctuations are much larger thana, however,S(q) ∼ 1/q2 only for q � 1/l,
wherel depends on the amplitude of these fluctuations. The behaviour of the structure factor
for q � 1/l depends on the relative amplitude of the phonon and undulation modes. If
in-plane fluctuations are small or absent,S(q) ∼ 1/q3−ζ , while if their amplitude is large,
S(q) ∼ 1/q4ζ−2.

For a crumpled membrane, the structure factor satisfies the scaling formS(q, L) =
S(qRg) = S(qN1/df ), wheredf is the fractal dimension of the network (Ceperleyet al
1978, Kantoret al 1987). For intermediateq, S(q) ∼ 1/qdf .
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buckled

stretched

T

m

0 Tc

flat

crumpled

Figure 1. A schematic phase diagram of polymerized membranes in the(m, T ) plane. The
crumpling transition is located atm = 0, T = Tc.

2.1.9. Tension and the buckling transition.The results described in the previous two
sections apply to unconstrained networks, such as those with free edges. However,
membranes can be subjected to a large variety of boundary conditions. A simple
generalization of the free-boundary case corresponds to suspending the network in a frame.
A change of the size of the frame can induce a homogeneous tension or tangential pressure
on the membrane (Guitteret al 1988, 1989, Aronowitzet al 1989, Guitteret al 1990). The
resulting phase diagram is summarized in figure 1. The variablem measures the ratio of
the linear size of the frame to the internal sizeL of the network atT = 0 without tension.
For free boundary conditions,m has the valuemsp(T ), which is positive in the flat phase
(for T < Tc) and zero forT > Tc. msp therefore serves as an order parameter for the
crumpling transition. In analogy to standard critical phenomena, if the crumpling transition
is continuous, the free energy should satisfy the scaling relation (Aronowitzet al 1989)

F(t, σ ) = t2−α6(σ/t1) (28)

wheret is the reduced temperature, the ‘tension’σ (defined byσ = (1/LD)∂H/∂m, where
H is the Helmholtz free energy of the membrane) is the field conjugate to the order parameter
m, and1 is the gap exponent. At the critical point,

m ∼ σ 1/δ (29)

whereδ = (D + 2− ηc)/(D − 2+ ηc), andηc(D, d) is related to the fractal dimension at
the crumpling transition by

ηc = [(4−D)df − 2D]/df (30)

for D < 4 (Aronowitz et al 1989). The regionm > msp corresponds to a stretched
membrane which is under tension, and forT < Tc, m approachesmsp as

m−msp(T ) ∼ σ 1/δ′ (31)

for σ → 0. Inside the coexistence region,|m| < msp(T ), the network buckles into an
inhomogeneous mixed thermodynamic state consisting of a mixture of flat states with
different orientations. Crossing the linem = msp(T ) corresponds to abuckling transition
with one relevant scaling field. The exponentδ′ in equation (31) can be expressed in terms
of the exponentη of the flat phase as (Aronowitzet al 1989, Guitteret al 1989)

δ′ = (2− η)/(D − 2+ η). (32)
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Sinceδ′ 6= 1, there is a breakdown of the linear Hooke’s law relation between stress and
strain.

2.2. Fluid membranes

The Hamiltonians of fluid membranes are invariant not only under rotations and translations,
but also under reparametrizations. This additional invariance is due to the fluid structure,
which does not allow a preferred coordinate system, and therefore cannot support shear
stress. Fluid membranes are compressible, but the compressibility modulus is usually rather
large, so they are often studied in the incompressible limit, where the membrane area is fixed.
In this case, the only contribution to the configurational energy is the bending energy. For
membranes which do not have a preferred radius of curvature, the curvature elastic energy
has the form (Canham 1970, Helfrich 1973, Evans 1974)

βHb =
∫

dS

[
1

2
κH 2+ κ̄K

]
(33)

whereκ is the bending rigidity,κ̄ the saddle-splay modulus, andH andK are the trace
and determinant of the curvature tensor, respectively. For fixed topology, the second term
in equation (33) is a constant, by the Gauss–Bonnet theorem. Morse and Milner (1995)
have shown that a finite compressibility does not change the scaling behaviour; we therefore
ignore compressibility effects in the following.

For the fluctuations of an almost spherical vesicle of radiusr0, the radial position vector
of the vesicle at solid angle� ≡ (θ, φ) can be written as

r(�) = r0[1+ u(�)] (34)

whereu(�) is the dimensionless amplitude of radial displacement. An expansion ofu in
spherical harmonics reads

u(�) =
lM∑
l=0

l∑
m=−l

ulmYlm(�) (35)

wherelM is a large wavenumber cut-off determined by the number of degrees of freedom;
since only motion normal to the vesicle surface is relevant,(lM + 1)2 = N in the present
case. The excess bending energy1E ≡ (κ/2)[∫ dS H 2 − 16π ], areaA, and volumeV of
the vesicle can be written (to orderu2) as (Milner and Safran 1987, Helfrich 1986)

1E = κ

2

∑
l,m

|ulm|2l(l + 1)(l − 1)(l + 2) (36)

A = 4πr2
0(1+ u0)

2+ r2
0

∑
l>0

|ulm|2[1+ l(l + 1)/2] (37)

and

V = 4π

3
r3

0(1+ u0)
3+ r3

0

∑
l>0

|ulm|2 (38)

whereu0 = u00/(4π)1/2.
The constant-area constraint is incorporated by choosingu0 to satisfyA = 4πr2

0, which
implies

(1+ u0)
2 = 1− 1

4π

∑
l>0

|ulm|2[1+ l(l + 1)/2]. (39)
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The average volume of a fluctuating vesicle in this approximation is then given by

〈V 〉 = V0

{
1+ 3

8πκ

lM∑
l=2

(2l + 1)[1− l(l + 1)/2]

l(l + 1)(l − 1)(l + 2)

}
(40)

whereV0 = 4πr3
0/3. Both the effective radiusreff = r0(1+ u0) and the average volume

therefore dependlogarithmically on the surface area (Gompper and Kroll 1996):

〈reff 〉/r0 ≈ 1− 1

4πκ
ln(lM/2) (41)

〈V 〉/V0 ≈ 1− 3

8πκ
ln(lM/2) (42)

wherelM ∼
√
A.

A systematic theory of vesicle fluctuations with several constraints, like fixed areaand
fixed volume, has been developed by Seifert (1995) (see also Seifert (1997)) and Heinrich
et al (1997).

The interaction between the undulation modes leads to a renormalization of the bending
rigidity (Helfrich 1985, Peliti and Leibler 1985, Caiet al 1994):

κR(`) = κ − ακ

4π
ln(`/a) (43)

which softensthe membrane on large length scales`. Here, a is a microscopic length.
The prefactorακ has been predicted to be universal. However, there has been a long-
standing debate about its value; bothακ = 3 (Peliti and Leibler 1985, F̈orster 1986, Kleinert
1986, David and Leibler 1991, Caiet al 1994) andακ = 1 (Helfrich 1985) have been
suggested.

2.3. Hexatic membranes

The hexatic phase of planar membranes is characterized by short-range translational order, as
in fluid membranes, and quasi-long-range bond-orientational order (Kosterlitz and Thouless
1973, Halperin and Nelson 1978, Young 1979). It is the bond-orientational order that
distinguishes the hexatic from the fluid phase. In order to describe hexatic order, a set of
orthonormal unit vectorse1(x) ande2(x) is introduced at each point of the surface. Hexatic
order is then described by the local bond order parameter

m(x) = cosθ(x)e1+ sinθ(x)e2 =
∑
α

mαeα (44)

where θ(x) has sixfold symmetry. Since the hexatic order parameterm has a fixed
magnitude, and there are no external fields aligningm along a particular direction, the
lowest non-trivial contribution to the energy arises from its gradients (Nelson and Peliti
1987, David 1989, Park and Lubensky 1996c),

FA = 1

2
KH

∫
dS gijDim ·Djm (45)

whereKH is the hexatic stiffness, andDi is the covariant derivative. In order to compare
order parametersm(x) andm(x′) at two different pointsx andx′, one has to parallel
transport the order parameter atx along the geodesic tox′. Under parallel transport in
direction dxi , the unit vectorse1 and e1 are rotated by an angleAi dxi ; the covariant
derivative is then given by

Dimα = ∂imα + εαβAimβ (46)
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whereεαβ is the antisymmetric tensor withε12 = −ε21 = 1. The vector fieldAi is thespin
connection, whose curl is the Gaussian curvature,

γ ij ∂iAj = K (47)

whereγ ij = εij /
√
g. With the use of equation (46), the free energy (45) can finally be

written as (Nelson and Peliti 1987, David 1989, Park and Lubensky 1996c)

FA = 1

2
KH

∫
dS gij (∂iθ − Ai)(∂j θ − Aj). (48)

The excitations which destroy the hexatic order and cause a Kosterlitz–Thouless
transition to the fluid phase are disclinations. They give rise to a singular contribution,
θdclin, to the bond vector field; the disclination density,s(x), is given by

s(x) = γ ij ∂i∂j θdclin. (49)

The contribution of disclinations to the free energy (48) is (Park and Lubensky 1996a, c,
Deem and Nelson 1996)

FC = −1

2
KH

∫
dS (s −K) 1

1g

(s −K) (50)

where1g = DiDi is the Laplacian on the surface with metric tensorgij . Two conclusions
can be drawn from this result. First, the relevant quantity is not the disclination density or
the Gaussian curvature separately, but rather the difference between them. The disclination
density can therefore be screened by the Gaussian curvature. Second, there is a long-range
Coulomb interaction between the densities(s(x)−K(x)) at different parts of the surface.

0 0.04 0.08

0.4

0.8

1.2

1/κ

1/KH

crumpled

A

crinkled

Figure 2. The phase diagram for hexatic membranes in the (1/κ–1/KH ) plane. The
renormalization group calculations underlying this diagram are approximately valid below
the line 0A. The crinkled-to-crumpled transition occurs via disclination melting in this case.
Redrawn from Park and Lubensky (1996c).

The phase behaviour of this model has been studied in detail (Nelson and Peliti 1987,
David et al 1987, Guitter and Kardar 1990, Park and Lubensky 1996a, b, c, Deem and
Nelson 1996, Nelson 1996). The phase diagram which has now emerged, based on a careful
renormalization group analysis (Park and Lubensky 1996c), is shown in figure 2. There is
a hexatic, ‘crinkled’ phase, which is characterized by analgebraicdecay of the correlation
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function of surface normal vectors, at large bending rigidityκ and hexatic stiffnessKH . A
Kosterlitz–Thouless transition to a fluid, ‘crumpled’ phase occurs not only with decreasing
KH , but also with decreasingκ.

It has been argued by Nelson (1996) that the free energies of isolated fivefold and
sevenfold disclinations in hexatic membranes need not be identical. This asymmetry has
been confirmed by explicit calculations of the shapes and energies of these disclinations
(Park and Lubensky 1996a, Deem and Nelson 1996). However, this doesnot lead to
two distinct Kosterlitz–Thouless defect proliferation temperatures in the thermodynamic
limit—with periodic boundary conditions—since a ‘charge-neutrality’ condition dictates
identical numbers of fivefold and sevenfold disclinations in this case. On the other hand,
for membranes of finite size with free edges, the lower energy of fivefold disclinations
indicates a tendency towards the formation of spherical vesicles (Nelson 1996, Deem and
Nelson 1996); even in this case, however, it has been argued that in the basin of attraction
of the hexatic fixed point, thermal fluctuations always drive the system into an ‘unbuckled’
regime, where disclinations proliferate at the same critical temperature (Deem and Nelson
1996).

3. Models of polymerized membranes

3.1. Tethered networks

Polymerized membranes can be modelled by a network of particles that are connected
together to form a regular two-dimensional array embedded ind = 3 dimensions. While
the network is generally taken to be a triangular array, the type of lattice is, to a large extent,
unimportant (Baiget al 1994). Similarly, the exact form of the ‘binding’ potential between
neighbouring particles is also irrelevant. However, it is essential that the bonds between
adjacent particles cannot be broken so that the connectivity is fixed. This guarantees that the
network has a finite shear modulus. Each particle or vertex is labelled by a two-dimensional
internal coordinate vectorx ≡ (x1, x2), with discretex1 and x2, denoting its place in the
network. For a triangular mesh, two primitive vectors{a(1),a(2)} of equal length̀ 0 making
an angle of 60◦ define the lattice. The locations of the vertices in the lattice are given by

x = ma(1) + na(2) (51)

wherem andn are integers. Two general classes of nearest-neighbour interaction potentials
have been used in simulation studies of polymerized membranes. In the first, the vertices
are point particles with harmonic nearest-neighbour interactions (Ambjørnet al 1989, Baig
et al 1989a). In the second, hard spheres of radiusσ0 are placed at each vertex, and
the spheres interact via tethers of maximum extension`0 (Kantor and Nelson 1987a). A
variant of the tether-and-bead model, in which the hard-sphere and tethering potentials
are replaced by anharmonic interaction potentials, is used in molecular dynamics (MD)
simulations (Abrahamet al 1989).

3.1.1. Tether-and-bead and Gaussian models.One of the simplest tethering potentials,
V (r), is one which causes the particles to behave as if tethered by a string,

V (r) =
{

0 if r < `0

∞ otherwise.
(52)

The potentialV (r) acts only between tethered nearest neighbours; it ensures that the distance
between nearest neighbours is less than`0. If this is the only interaction between particles,
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we have a ‘phantom’ tethered surface which can self-intersect when large fluctuations bring
distant segments of the network into close spatial proximity. Phantom membranes are very
flexible surfaces, and there is no resistance to bending. They can roll up or collapse at no
energy cost.

The total interaction energy of the network is

βEnn =
∑
〈x,x′〉

V (|r(x)− r(x′)|). (53)

The thermal behaviour of the network can be determined exactly for the Gaussian potential
V (r) = (K0/2)(r/a)2. In this case, the mean value of the mean square separation
|r(x)− r(x′)|2 is (Kantoret al 1987)

〈|r(x)− r(x′)|2〉 ' da2

π
√

3K0

ln(|x− x′|/a) (54)

for |r(x)− r(x′)| � a. The radius of gyration squared

R2
G =

1

2A2

∫
d2x

∫
d2x ′ 〈|r(x)− r(x′)|2〉 (55)

whereA is the area of the network therefore scales asR2
G ∼ ln(L) with the linear sizeL

of the membrane (see equation (10))—independently of the spatial dimension.
Simulations have shown that the same scaling behaviour is obtained for the tethering

potential (52). Furthermore, a simple Migdal–Kadanoff bond-moving renormalization group
approximation has been used (Kantoret al 1987) to show that potentials of this form
are mapped into a Gaussian under iteration, supporting the view that the logarithmic
scaling behaviour of the radius of gyration squared is universal for networks with central-
force nearest-neighbour interactions. A related class of models with an elastic energy
proportional to the sum of the areas of the elementary triangles have also been studied
(Gross 1984, Billoireet al 1984). The results indicate that this model also belongs to the
same universality class. However, as pointed out by Ambjørnet al (1985), this model has
the pathology that the partition function is dominated by surfaces with infinite spikes in the
thermodynamic limit. This happens because essentially all of the surface area is taken up
by a small number of elementary surface triangles, with all others becoming vanishingly
small. It is clear that models with the interaction energy (53) do not share this problem.

3.1.2. Self-avoidance.In simulations, self-avoidance can be guaranteed by placing a
particle at each vertex which is large enough that it cannot pass through the network mesh.
In Monte Carlo simulations, the particles are taken to be hard spheres of diameterσ0. In
this case,V (r) is augmented by the potential

VHS(r) =
{
∞ if r < σ0

0 otherwise
(56)

betweenall beads. Self-avoidance requires`0/σ0 <
√

3. Since these potentials do not
introduce an energy scale into the problem, the results are independent of temperature,
and the free energy is solely due to entropic effects. Such potentials may be expected to
generate small persistence lengths, and thus reduce the crossover effects (Kantoret al 1986).
In molecular dynamics simulations, it is convenient to use a softer interaction potential, and
a purely repulsive Lennard-Jones potential is generally used. For any of these choices, the
long-wavelength elastic properties of the network should be similar to real polymerized
membranes.



Network models of fluid, hexatic and polymerized membranes 8809

3.1.3. Bending energy.In Monte Carlo simulations, an explicit bending rigidity can be
added using any of a number of discretizations of the bending energy of the membrane.

One commonly used discretization (Kantor and Nelson 1987a) of the bending energy is

βEnormb = 1

2
λb
∑
〈ij〉
|ni − nj |2 = λb

∑
〈ij〉
(1− ni · nj ) (57)

where the sum runs over all pairs of neighbouring triangles, andni is the surface normal
vector of trianglei. In the continuum limit, the differenceni −nj becomes the gradient of
the unit-normal vector field (Seung and Nelson 1988), and

βEnormb → βHnorm = 1

2
κ

∫
dS gij ∂in · ∂jnj (58)

wheregij is the contravariant metric tensor. Equation (58) is equivalent to the bending
energyβHb, equation (33), withκ̄ = −2κ (Seung and Nelson 1988). The relationship
between the bending rigidityλb in equation (57) andκ can be determined by either
discretizing equation (58) on a random surface, as described by Gompper and Kroll (1996)
and Itzykson (1986), or by covering a sphere or cylinder with a numberN4 of equilateral
triangles and taking the limitN4 → ∞. Surprisingly, the result of the latter procedure
depends on the shape of the surface! While both explicit discretization and coverings of a
sphere yieldλb =

√
3κ (Kroll and Gompper 1992a, Gompper and Kroll 1996), coverings

of a cylinder yieldλb = 2κ/
√

3 (Seung and Nelson 1988, Gompper and Kroll 1996). This
problem is discussed rather extensively by Gompper and Kroll (1996).

Discretizations of the squared Laplacian form of the bending energy

βHLap =
∫

dS (1R)2 ≡
∫

dS H 2 (59)

do not share this pathology (Gompper and Kroll 1996). A general introduction to methods
for discretizing operators on triangulated random surfaces is given by Itzykson (1986). On
a triangulated surface, the mean curvature at nodei is

H = n ·1R→ Hi = 1

σi
ni ·

∑
j (i)

σij

lij
(Ri −Rj ) (60)

whereni is the surface normal at nodei and the sum is over the neighbours of sitei. lij is
the distance between the two nodesi and j , σij is the length of a bond in the dual lattice
(Itzykson 1986), and

σi = 1

4

∑
j (i)

σij lij (61)

is the area of the virtual dual cell of vertexi. The lengthσij in equations (60) and (61) is
given by σij = lij [cot(θ1) + cot(θ2)]/2, whereθ1 and θ2 are the two angles opposite link
ij in the triangles(ijk) and (ijk′), respectively. Note that since cot(θ) < 0 if θ is obtuse,
σij / lij can be negative if the sides of the two triangles are significantly different. Although
there are some sum rules, such as

∑
i σi = A, whereA is the area of the surface, there is no

guarantee, in general, that theσij , or even theσi , are positive (Itzykson 1986). While this
causes no problems in simulation studies of the self-avoiding tether-and-bead models, it can
in certain related models, where the vertices are point particles, and the nearest-neighbour
interaction potential is harmonic (Espriu 1987, Baillieet al 1990).
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Sincen ‖ 1R for surfaces embedded in three dimensions, equation (60) implies that
the Laplacian squared bending energy can be written as (Itzykson 1986, Espriu 1987)

βE
Lap

b = τ

2

∑
i

σi(1R)
2
i =

τ

2

∑
i

1

σi

[∑
j (i)

σij

lij
(Ri −Rj )

]2

(62)

with τ = κ. Other discretizations of the bending energy which involve similar local averages
of the mean curvature have been used by Gompper and Goos (1994) and Jülicher (1994).

In simulations performed using Gaussian spring models, the discretization (62) cannot
be used, because there are large fluctuations in both the size and shape of the elementary
triangles. In this case, someσi can be very small or negative, resulting in unphysical
contributions to the bending energy. In this case, a simpler version of the bending energy
(Espriu 1987, Baillieet al 1990),

βẼ
Lap

b = τ

2

∑
i

1

�i

[∑
j (i)

(Ri −Rj )
]2

(63)

has been employed, where�i is the sum of the areas of the surface triangles adjacent to
site i. The form ofβẼLapb follows from equation (62) by substituting inσij / lij = 1/

√
3,

the result for equilateral triangles, and noting that
∑

i σi =
∑

i �i/3.

3.1.4. Simulation methods.The total energy of a network configuration,βE, is give by the
sum of the nearest-neighbour,βEnn, and bending,βEb, energies. A number of Monte Carlo,
molecular dynamics, and Langevin methods have been used to determine the thermodynamic
behaviour of tethered networks.

Monte Carlo methods are the simplest. A Monte Carlo step consists of an attempt to
update the position of each vertex by a random displacement in the cube [−s, s]3. Updates
are accepted with a probability equal to min[1, exp(−δHo,n)], where

δHo,n = βEold − βEnew. (64)

s is chosen so that approximately 50% of the attempts are accepted. If there is no explicit
bending energy, and hence equations (52) and (56) are the only interaction potentials,
all moves are accepted which do not violate the hard-sphere or maximum-tether-length
restrictions.

A wide variety of molecular dynamics procedures have also been used to study
polymerized networks. Simulations have been performed in the microcanonical ensemble
(Abrahamet al 1989, Abraham and Nelson 1990b), constant-temperature ensemble—using
both constraint and Nosé thermostating (Zhanget al 1996) as well as heat-bath algorithms
(Grest and Murat 1990, Grest 1991, Petsche and Grest 1993, Zhanget al 1993)—as well
as the(T , σ )-ensemble (Zhanget al 1996), whereσ is the lateral tension. Since molecular
dynamics methods are more efficient when softer potentials are employed, the nearest-
neighbour potential is generally taken to be a harmonic or a finitely extensible non-linear
elastic potential, while a purely repulsive, shifted and truncated Lennard-Jones potential is
used to ensure self-avoidance. A closely related method—the Fourier-accelerated Langevin
algorithm—has also been used to study the crumpling transition of self-intersecting networks
with an explicit bending rigidity (Harnish and Wheater 1991, Wheater and Stephenson
1993, Wheater 1996). A Monte Carlo renormalization group procedure in momentum space
has been employed in conjunction with this approach (Espriu and Travesset 1995, 1996).
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(a)

(b)

Figure 3. A typical configuration of a polymerized membrane (containing 1801 vertices with
tether length̀ 0 = 1.6σ0) confined between two parallel walls of separation 9σ0. Projections (a)
onto the wall and (b) parallel to the wall are shown. From Gompper and Kroll (1991a).

3.2. Simulation results

3.2.1. Simulations of the flat phase.MC and MD simulations have shown that polymerized
membranes are in a flat phase for sufficiently large bending rigidity. Several methods, such
as the analysis of the moments-of-inertia tensor (Boalet al 1989), the anisotropic scattering
intensity (Abraham and Nelson 1990a), and the pressure exerted on two confining walls
(Gompper and Kroll 1991a, b), have been employed to determine the exponentsη or ζ
which characterize the out-of-plane fluctuations. A typical configuration of a polymerized
membrane between two walls is shown in figure 3. Most of these simulations were
performed using free-edge boundary conditions. The most precise values of the exponents,
however, have been obtained from simulations of vesicles (Zhanget al 1993, Petsche and
Grest 1993) and tensionless membranes with periodic boundary conditions (Zhanget al
1996). In the first case, one findsη = 0.81± 0.03, or ζ = 0.60 (Zhanget al 1993), and
ζ = 0.58± 0.02 (Petsche and Grest 1993), while in the second,ζ = 0.59± 0.02 (Zhanget
al 1996). These values are in good agreement with the theoretical result of Le Doussal and
Radzihovsky (1992) quoted above. This settles a debate concerning the possible absence
of renormalization of the in-plane elastic constants (Lipowsky and Giradet 1990, Abraham
1991).

For d = 3, a negative value of the Poisson ratio has been confirmed in simulations
(Zhang et al 1996, Falcioniet al 1997). Whereas the value obtained using periodic
boundary conditions,σp = −0.15 ± 0.01 (Zhang et al 1996), is about a factor two
smaller than the theoretical expectation quoted above, a simulation with free-edge boundary
conditions yieldedσp ≈ −0.32 (Falcioniet al 1997). The valueσP = −0.34 was measured
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in Monte Carlo simulations of tethered networks with free-edge boundary conditions for
d = 4 (Barsky and Plischke 1994).

3.2.2. Crumpling and buckling transitions of phantom membranes.In the absence of self-
avoiding restrictions, a crumpling transition is observed with decreasing bending rigidity
(Kantor and Nelson 1987a, b). The crumpled phase is characterized by an isotropic scattering
intensity and a fractal dimensiondf = ∞ (Kantor et al 1986, 1987). The most detailed
studies of the crumpling transition have been performed using Gaussian spring models.
While there is some evidence that the critical behaviour at the crumpling transition might
depend on whether expressions (57) or (63) are used for the discretized bending energy
(Baig et al 1989b, Harnish and Wheater 1991), more recent studies (Baiget al 1994) have
shown that this is not the case. Baiget al (1994) have also shown that the critical behaviour
is the same for various surface triangulations and choices of the elastic nearest-neighbour
potential. In particular, while models with an elastic energy proportional to the sum of the
areas of the elementary triangles are pathological due to the proliferation of spikes for zero
bending rigidity (see section 3.1.1), the behaviour at the crumpling transition is the same.

Simulation results ind = 3 dimensions (Kantor and Nelson 1987a, Kantoret al
1987, Ambjørnet al 1989, Renken and Kogut 1990, Harnish and Wheater 1991, Wheater
and Stephenson 1993, Baiget al 1994, Espriu and Travesset 1996, Wheater 1996, Bowick
et al 1996) are consistent with a second-order crumpling transition. The most accurate
values for the critical exponents were obtained in the three most recent papers. A
detailed study of networks containing up to 642 nodes with periodic boundary conditions
(Wheater 1996) reported the following values for the correlation length exponentν̄

(not to be confused with the size exponent defined in equation (5)) and the thermal
exponentα: a direct measurement of the correlation length exponent from an analysis
of the tangent–tangent correlation function yielded the resultν̄ = 0.71± 0.05, while
a finite-size scaling analysis of the peak in the specific heat, assuming hyperscaling,
gave ν̄ = 0.73± 0.06. These results implyα = 0.58± 0.10. A finite-size scaling
analysis of the peak in the specific heat in a study of networks with free-edge boundary
conditions containing up to 1282 nodes (Bowicket al 1996) yielded the resultα =
0.40 ± 0.10. Bowick et al (1996) also foundηc = 0.71 ± 0.05 (which corresponds
to df ≈ 3.1 (see equation (30))) from an analysis of the decay of the normal–normal
correlation function, in reasonable agreement with the theoretical predictions discussed in
section 2.1.7. A Monte Carlo renormalization group analysis of data obtained using a
Fourier-accelerated Langevin algorithm yielded the resultηc = 0.85± 0.15 (Espriu and
Travesset 1996).

The Gaussian spring model with bending energy (57) has also been studied using Monte
Carlo methods ind = 2 dimensions (Renken and Kogut 1991a). A finite-size scaling
analysis of the data for the specific heat suggests that the crumpling transition is first order
in this case. This result is consistent with that obtained for the folding transition of the
regular triangular lattice in the presence of a bending rigidity (Di Francesco and Guitter
1994a) (see section 7.2).

The scaling behaviour at the buckling transition has been studied using Monte Carlo
methods by Guitteret al (1990).

3.2.3. The effect of self-avoidance.The simplest model of tethered self-avoiding
membranes is a triangular network of purely repulsive spheres of diameterσ0. Self-
intersection is prohibited if the potentials are chosen so that the spheres cannot penetrate
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(a)

(b)

Figure 4. (a) Cross sections of typical configurations of vesicles containingN = 16 002
monomers withn = 8 (Petsche and Grest 1993). (b) Video-enhanced differential interference
contrast microscopy images of isolated red-blood-cell cytoskeletons at 25 mM salt concentration.
The mean diameter of the cytoskeletons is 5.3± 0.4 µm (photograph courtesy of Ch Schmidt).
Note the similarity between the shapes of the experimental and simulated networks.

an elementary triangle of the network. It was first shown by Abrahamet al (1989), and
later confirmed by others (Ho and Baumgärtner 1989, Abraham and Nelson 1990a, b, Grest
1991, Gompper and Kroll 1991a, b) that self-avoidance completely suppresses the crumpling
transition, so self-avoiding membranes are in the flat phase even without an explicit bending
rigidity.

It has been argued by Abraham and Nelson (1990b) that a bending rigidity is generated
for entropic reasons by excluded-volume interactions, even if there is no explicit bending
energy. In fact, such a term is generated already upon the introduction of next-nearest-
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neighbour interactions, and, for the standard tether-and-bead model discussed in the previous
paragraph, this effective rigidity is larger than that required to produce the flat phase in
phantom membranes. This effective rigidity is proportional to the temperature, so changing
the temperature does not modify the strength of this effect. This argument leaves open the
possibility that more flexible surfaces might crumple. Subsequently, simulations have been
performed on tethered networks in which linear chains ofn monomers are connected to
form either a hexagonal lattice (Abraham 1992, Abraham and Goulian 1992) or a triangular
lattice (Petsche and Grest 1993). The largest simulations have been performed on networks
consisting ofN = 29 420 monomers for open membranes (Abraham 1992, Abraham and
Goulian 1992) andN = 25 002 for vesicles (Petsche and Grest 1993), both forn = 8. Three
cross sectional views of typical configurations of vesicles containingN = 16 002 monomers
with n = 8, are shown in figure 4. Video-enhanced differential contrast microscopy
images of isolated red-blood-cell cytoskeletons at high salt concentration (Schmidtet al
1993) are also shown. Note the similarity between the conformations of the red-blood-cell
cytoskeletons and the simulated network.

There have also been several studies of models in which the effective size of the
particles at the vertices,σ0, is decreased (Abrahamet al 1989, Boalet al 1989, Kantor
and Kremer 1993, Barsky and Plischke 1994), or the triangular network is site (Grest and
Murat 1990) or bond (Plischke and Fourcade 1991) diluted. Self-avoidance can also be
guaranteed by requiring that the elementary surface triangles of the network do not self-
intersect (Baumg̈artner 1991, Baumg̈artner and Renz 1992, Kroll and Gompper 1993). This
results in a very flexible surface which can fold on itself without any cost in energy. The
resulting surfaces are therefore much rougher than those constructed with hard-core repulsion
for small n, and are, in fact, very similar to the tethered-chain models in the limit of large
n. In all of these cases—with the exception of Baumgärtner (1991) and Baumgärtner and
Renz (1992), where a crumpled phase has been claimed—however, the membranes were
found to remain flat, even though the local bending rigidity is quite low. This suggests that
the interactions inducing the rigidity, whatever they are, are relevant under renormalization.

The spherically averaged structure functionS(q, L) is generally what is measured in
experimental studies of tethered membranes. However, special care must be exercised in
the interpretation of these measurements, since it is often difficult to discern the difference
between the directionally averaged scattering function of a flat, rough membrane and a
truly crumpled membrane. Indeed, in the first simulation studies of open tethered networks
(Kantor et al 1986, 1987), the results for the structure function were interpreted in terms
of a crumpled phase characterized by a scaling exponentν = 0.83± 0.03. However, as
discussed in section 2.1.8, the directionally averaged structure factor should scale asq−3+ζ

in the flat phase for a wide range ofq if the amplitude of the undulation modes is larger than
that of the phonon modes (Goulianet al 1992). Usingζ = 0.6, this is roughly consistent
with the behaviour observed by Kantoret al (1986, 1987). The results of subsequent, more
detailed studies of very flexible open networks (Abraham and Goulian 1992, Kroll and
Gompper 1993) are consistent with this interpretation. Abraham and Goulian (1992) have
found that the isotropically averaged structure factor scales asq−2.35 for a wide range ofq,
consistent with an exponentζ = 0.65. Simulations of impenetrable plaquette models (Kroll
and Gompper 1993) yield a structure factor that scales asq−2.7 for intermediate wavevectors,
which appears to lie between the two regimes 1/q−3+ζ and q2−4/ζ predicted by Goulian
et al (1992) and discussed in section 2.1.8. Recent x-ray and light scattering experiments
(Schmidt et al 1993) on isolated red-blood-cell cytoskeletons at high salt concentrations
measured a directionally averaged scattering function in which aq−2-regime was followed
by a q−2.35-regime for largerq, again consistent with the behaviour expected for a flat
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membrane. The result for intermediate wavevectors is consistent with that obtained in
simulation studies of tethered vesicles (Zhanget al 1993, Petsche and Grest 1993).

Polymerized membranes have also been studied for spatial dimensions larger than three.
As discussed in section 2.1.5, self-avoidance should become less important in this case, and
the network is more likely to be crumpled. Indeed, a crumpled phase is found for dimensions
d > 5 (Grest 1991, Barsky and Plischke 1994). This finding is in agreement with analyses
of the generalized Edwards model with two-body interactions using a Gaussian variational
approximation (Goulian 1991) and an expansion in a large embedding spaced (Le Doussal
1992). It was found that the flat phase is stable ford = 3 and that tethered membranes
are crumpled ford > 4, with the scaling exponentν approaching one (with logarithmic
corrections) ford → 4. Ford > 4, the results for the fractal dimensiondf are much closer
to the simulation results than the Flory prediction (8). Guitter and Palmeri (1992) used a
variational approach for larged, and found that ford = 3, tethered membranes lie exactly
on the boundary of the stable flat phase. Le Doussal and Radzihovsky (1992) have used
the self-consistent screening approximation to obtain the estimate that the upper critical
dimension isduc ≈ 4.98.

An alternative interpretation of the simulation results is suggested by the prediction
of Flory theory that four-body interactions are relevant below four dimensions and three-
body interactions are relevant below six dimensions (see section 2.1.5). Thus, if three-body
interactions are sufficient to generate an effective rigidity, Flory theory predicts that tethered
networks should crumple above six dimensions. While the critical dimensions suggested
by Flory theory should not be taken too seriously, this argument may provide some insight
into the origin of the observation that self-avoiding tethered surfaces are crumpled only
for d > 5.

In order to gain further insight into the influence of excluded-volume interactions on
determining whether a network is crumpled or flat, it would be interesting to be able to vary
not only the spatial dimensiond, but also the internal dimensionD of the network. While
this cannot be done for homogeneous networks in simulations, it was argued in section 2.1.6
that polymeric fractals are a useful generalization to consider (Grest 1991). These networks
are characterized by a spectral dimension,ds , which describes the intrinsic connectivity of
the network, and—at least in the Flory approximation—plays the same role asD. Levinson
(1991) found that the fractal dimension of self-intersecting Sierpinski gaskets (which have
a spectral dimensionds = 2 ln 3/ ln 5≈ 1.365 (Gefenet al 1981)) embedded in dimension
d where 36 d 6 8 is in good agreement with the Flory prediction (16). Similarly, Grest
and Murat (1990) have confirmed the Flory predictiondf0 = 4 for percolation clusters at
the percolation threshold.

Self-avoidance is a relevant perturbation for spatial dimensiond < duc whereduc is given
by equations (12) and (17) for homogeneous networks and polymeric fractals, respectively.
There are a number of self-avoiding networks where the Flory estimate fordf , equation (19),
accurately describes the scaling behaviour ford < duc. These include linear polymers in two
and three dimensions, percolation clusters at the percolation threshold (for whichds ' 4/3
in all dimensions (Alexander 1982)) in two and three dimensions (Grest and Murat 1990),
and Sierpinski gaskets for 36 d 6 duc ≈ 8.6 (Levinson 1991). In all these cases, any
deviation from Flory theory is very small.

Three examples where Flory theory isqualitatively wrong are Sierpinski gaskets for
d = 2 (Duering and Kantor 1989) and two-dimensional tethered networks in three and four
dimensions. In contrast to the systems discussed in the last paragraph, in all of these cases
higher-ordern-body interactions are relevant. A phase diagram for polymeric fractals (Grest
1991, Levinson 1991) which shows where the crumpled and flat phases are stable in the
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Figure 5. The phase diagram for polymeric fractals. The regions of stability of the crumpled
and flat phases are indicated. The crosses represent data for linear polymers,ds = 1, the
squares are for Sierpinski gaskets (Duering and Kantor 1989, Levinson 1991), and the circles
are for two-dimensional tethered membranes (Grest 1991, Barsky and Plischke 1994). The open
symbols are in the flat phase and the closed symbols and crosses are in the crumpled phase.
The dashed line separates the flat and crumpled phases; self-avoidance (SA) is relevant above
the solid line, and irrelevant below it. Redrawn from Grest (1991).

(ds, d) plane is presented in figure 5. It would be interesting to have results for systems
with ds > 2, such as gels embedded ind > 3 dimensions, in order to describe in more
detail the phase boundary between the flat and crumpled regimes. Similarly, further results
for systems withds in the range 4/3 to 2 might help to provide an understanding of why
the Flory estimate fordf is so good for values ofds near one, but fails fords = 2 (Grest
1991, Grest and Murat 1995).

3.2.4. Attractive interactions. Another possible way to drive a polymerized membrane into
the crumpled phase is to include an attractive interaction between all vertices—in addition
to the hard-sphere repulsion. Two cases which have been studied so far are square-well
and van der Waals interactions. In the first case, a crumpled phase with fractal dimension
df = 2.5 was found over a very narrow range of temperatures (Liu and Plischke 1992).
In the second case, a sequence of folding transitions, but no crumpling, was observed
(Abraham and Kardar 1991, M̈unkel and Heermann 1995). The low-temperature phase in
both cases is a collapsed state of fractal dimensiondf = 3, in agreement with the Flory
result discussed in section 2.1.3.

Grest and Petsche (1994) have combined weak self-avoidance (short polymer chains
of length n between vertices) and attractive (van der Waals) interactions to search for a
crumpled phase of tethered vesicles. Forn = 4, a first-order transition between a high-
temperature flat phase and a low-temperature collapsed phase was found. However, for
n = 8, the transition seems to be second order, with a crumpled phase of fractal dimension
df ' 2.4 at the transition point.

3.2.5. Forced crumpling of elastic sheets.The most obvious way to obtain a crumpled state
of an elastic sheet is to apply an external force and to crush the sheet into a small confining
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Figure 6. The curvature energy distribution in a hexagonal sheet of diameterL = 160a0 (where
a0 is the equilibrium spring length) which has been crushed into a sphere of radiusR0 ' L/6.
Darker regions have higher energy density. From Kramer and Witten (1997).

volume. This was already done several years ago in a ‘desktop experiment’ (Kantoret
al 1987) in an attempt to determine the exponentν of the radius of gyration of thermally
crumpled membranes. Very recently, Kramer and Witten (1997) studied this question much
more carefully. They use a triangular network of springs with bending rigidity to model the
elastic sheet. This network is then compressed by slowly decreasing the radius of a confining
sphere. They show that after compression, most of the elastic energy is contained in point-
like vertices and in a network of ‘stretching ridges’; see figure 6. The scaling behaviour
of ridges of lengthR was determined in earlier studies of the asymptotic shape of large
fullerene balls—flat-sided icosahedra with smooth edges (Witten and Li 1993, Lobkovskyet
al 1995, Zhanget al 1995)—and other regular polyhedra (Lobkovskyet al 1995, Lobkovsky
1996), where it was shown that the width of a stretching ridge scales asR2/3, and its energy
asR1/3. For phantom networks, the length of a ridge in the confining sphere is proportional
to the sphere radius,R0, so the number of ridges in a sheet of internal dimensionL is
approximately(L/R0)

2. The total energy of the (phantom) crushed sheet should therefore
scale asR−5/3

0 ; this result is supported by the simulation data (Kramer and Witten 1997).
The buckling of (isolated) ridges under compression by an external force which

is applied either parallel or perpendicular to the ridge axis has also been investigated
(Lobkovsky and Witten 1997).

3.2.6. Membranes with quenched internal disorder.Three types of quenched disorder in
polymerized membranes have been studied during the last few years: size impurities (Kantor
1992, Mori 1996b), random polymerization (Nelson and Radzihovsky 1991, Radzihovsky
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and Nelson 1991, Morseet al 1992b), and random spontaneous curvature (Morse and
Lubensky 1992, Morseet al 1992a). Theoretical analyses—based on renormalization
group theory—lead to the conclusion that for any finite temperature,T > 0, weakshort-
range disorder is irrelevant (Nelson and Radzihovsky 1991, Radzihovsky and Nelson
1991). However, atT = 0, the situation is found to be more complicated. In
phantom membranes,size impurities—which correspond to randomness in the local preferred
metric—lead to a softening of the bending rigidity and a destabilization of the flat phase
in favour of a crumpled glass phase (Nelson and Radzihovsky 1991, Radzihovsky and
Nelson 1991, Radzihovsky and Le Doussal 1992); Monte Carlo simulations (Kantor 1992)
confirm this result. Forrandom spontaneous curvature, on the other hand, the bending
rigidity is predicted to stiffen at long wavelengths, resulting in a new flat phase with
anomalous statistical and elastic properties (Morse and Lubensky 1992, Morseet al 1992a,
b). Numerical simulations (Morseet al 1992a, b) are again in agreement with these
predictions.

The possibility of a crumpled phase even forT > 0 for strongshort-range disorder has
been discussed by Radzihovsky and Le Doussal (1992), Bensimonet al (1992), and Mori and
Wadati (1994). Mean-field analyses of models with random internal stresses (Radzihovsky
and Le Doussal 1992) and random spontaneous curvature (Bensimonet al 1992) both
predict that the flat phase becomes unstable towards a crumpled glass phase analogous
to a spin glass forT > 0. Mori and Wadati (1994) used a Gaussian variational method
and concluded that for strong disorder in the preferred metric, self-avoiding membranes
with a small bending rigidity are in a crumpled phase characterized by a radius-of-gyration
exponentν = 6/7. This result is supported by Monte Carlo simulations of weakly self-
avoiding tethered membranes with site impurities (Mori 1996b) and tethered membranes
created by random polymerization of fluid films (Mori 1996a).

Le Doussal and Radzihovsky (1993) have used the self-consistent screening
approximation to show that, depending on the range of the disorder, several new glassy
phases are stable atT > 0 in polymerized membranes with weaklong-rangedisorder in
the preferred metric and/or the extrinsic curvature.

4. Models of fluid membranes

4.1. Randomly triangulated surfaces

For simulation studies of fluid membranes, the network model introduced in section 2.2
has to be modified to allow for the diffusion of vertices in the membrane. This is done by
making the connectivity of the network a dynamic variable. The simplest way to do so is to
cut and reattached tethers between the four beads of two neighbouring triangles (Kazakov
et al 1985, Boulatovet al 1986, Billoire and David 1986, Ho and Baumgärtner 1990, Kroll
and Gompper 1992a, Boal and Rao 1992a).

An interesting extension of the above algorithm called ‘baby universe surgery’ has
recently been suggested (Ambjørnet al 1994). The method is useful for the simulations
of closed surfaces when there is an appreciable probability for minimal necks, i.e. loops
consisting of three bonds that divide the surface into two parts. Such minimal necks are,
for example, common in the branched polymer phase, where there is a proliferation of long,
thin arms. The new Monte Carlo move consists of cutting the surface in two at the neck
and gluing the two surfaces back together in a way chosen at random. This procedure is
clearly more efficient for phantom surfaces; however, it should also be useful in simulations
of self-avoiding random surfaces for small bending rigidities. Baby universe surgery has
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been used in a number of simulation studies of two-dimensional quantum gravity, both with
and without matter fields. See Ambjørnet al (1995a, c) for references.

4.2. Renormalization of the bending rigidity

All current attempts to determine the renormalization of the bending rigidity from Monte
Carlo simulations are based on the scaling behaviour of the average volume〈V 〉 of
fluctuating vesicles of (approximately) constant areaA. The analogy with the behaviour of
the enclosed area of ring polymers in two spatial dimensions (Camachoet al 1991) suggests
the scaling form

〈V 〉A−3/2 = 2V (
√
A/ξp) (65)

whereξp = a exp[(4πκ)/ακ ] is the persistence length. Data obtained from Monte Carlo
simulations are indeed consistent with this scalingansatzfor ακ = 3.3± 0.5 (Gompper
and Kroll 1995b, Ipsen and Jeppesen 1995). However, the analytic result (42) for〈V 〉 in
the limit of largeκ is inconsistentwith the scalingansatz(65). Therefore, corrections to
scaling have to be taken into account (Gompper and Kroll 1996). To gain some insight into
the behaviour for moderateκ, the effect of the scale dependence of the bending rigidity has
been incorporated in equation (40) by replacingκ by κR(`); compare equation (43). This
implies (Gompper and Kroll 1996)

〈V 〉/V0− 1+ 3

2ακ
ln(4πκ/ακ) = 2V (

√
A/ξp). (66)

The Monte Carlo data scale about as well with the new scaling form—again withακ ' 3—as
they do with equation (65).

4.3. The phase diagram of fluid vesicles

The phase diagram of self-avoiding fluid vesicles as a function of the bending rigidityκ and
a pressure increment1p between the vesicle’s interior and exterior has been determined
from Monte Carlo simulations (Gompper and Kroll 1994, 1995b). For very small bending
rigidities and small or negative1p, vesicles are found to collapse into a branched-polymer-
like phase (Kroll and Gompper 1992a, b, Boal and Rao 1992a, Baillie and Johnston 1992),
which is characterized by the scaling laws

〈V 〉 ∼ N (67)

〈R2
g〉 ∼ Nνbp (68)

for the average volume and radius of gyration, withνbp = 1. A typical configuration is
shown in figure 7(a). A more detailed characterization can be obtained by studying random
walks on these surfaces; their behaviour determines the spectral dimensionds . The mean
square displacement aftert steps of a random walk on a surface ofN monomers is expected
to scale as (Gefenet al 1983, Komura and Baumgärtner 1990)

〈[r(t)− r(0)]2〉 = Nνf (t/N2/ds ) (69)

where the scaling functionf (x) ∼ xds/df for x � 1 and f (x) = constant forx � 1.
Simulation data indeed collapse onto a universal scaling function fords = 1.25±0.04 (Kroll
and Gompper 1992b), which is in excellent agreement with the best estimates for branched
polymers (Havlinet al 1984). Earlier claims of a crumpled phase of fluid membranes
characterized byνbp ' 0.8 (Baumg̈artner and Ho 1990, Ho and Baumgärtner 1990) and
ds = 2 (Komura and Baumg̈artner 1990) have not been confirmed.
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(a)

(b)

Figure 7. Typical configurations of fluid vesicles (containing 247 vertices with tether length
`0 = 1.67σ0) in the entropy-dominated regime. (a) The branched-polymer-like configuration
at bending rigidityκ � 1 and small pressure increment1p. (b) The inflated configuration at
bending rigidityκ � 1 and sufficiently large and positive1p. (c) The branched-polymer-like
configuration at bending rigidityκ ' 1.4 and negative1p. From Gompper and Kroll (1995b).
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(c)

Figure 7. (Continued)

With increasing pressure increment1p, a first-order transition to an ‘inflated’ phase
occurs (Gompper and Kroll 1992b, c, Dammannet al 1994). The transition pressurep∗

scales with the membrane sizeN as

p∗ ∼ N−ζ+ (70)

with an exponent in the rangeζ+ = 0.5 (Gompper and Kroll 1992b) toζ+ = 0.65± 0.05
(Gompper and Kroll 1994) andζ+ = 0.69± 0.01 (Dammannet al 1994). The differences
in the values ofζ+ are mainly due to the different data analyses. The value ofζ+ = 0.5 is
obtained when finite-size corrections are taken into account by replacingN in equation (70)
by (N −N0), with N0 = 40. The presently available range of system sizes does not allow
a clear distinction between these two values ofζ+.

Just above the transition, the vesicle is roughly spherical, but its surface is still very
rough; see figure 7(b). With further increasing pressure, it approaches the shape of a perfect
sphere. This approach can again be described by a scaling law. In analogy with the analysis
of the shape of inflated ring polymers (Maggset al 1990), the average volume of the vesicle
is predicted to scale as (Gompper and Kroll 1992b, c)

〈V 〉 = V0p
3ω+N3ν+ (71)

where

ω+ = 1− ν
3ν − 1

ν+ = ν

3ν − 1
. (72)

Monte Carlo simulations confirm this scaling form with an exponentν = 0.787± 0.020
(Gompper and Kroll 1992b, c). A similar scaling analysis applies to the moments of inertia
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λi , which determine the asphericity of vesicle shapes. The same arguments as those that
lead to equation (71) indicate that (Gompper and Kroll 1992c, Baumgärtner 1993b)

3〈λi〉
〈λ1+ λ2+ λ3〉 − 1= 0i(〈V 〉N−3ν/2). (73)

The scaling functions0i(x) are expected to decay asymptotically as0i(x) ∼ x−1/(3−3ν)

as the vesicle shape becomes spherical. Monte Carlo data for the smallest and largest
eigenvalues nicely follow this power-law behaviour, with an exponentν which is very
close to the value quoted above (Gompper and Kroll 1992c).

Figure 8. Transient shapes of vesicles of DMPC containing 2 mol% of the bipolar lipid denoted
as bola lipid. The images were recorded from top left to bottom right; the time interval between
two images is about 10 s. From Duweet al (1990).

The entropy-dominated phases are stable forκ . 2. A typical configuration for bending
rigidity κ ' 1.4 is shown in figure 7(c). Such vesicles shapes have been observed exp-
erimentally by Duweet al (1990); see figure 8. For larger bending rigidities, the curvature
energy dominates, and prolates, discocytes and stomatocytes are the shapes of minimal free
energy (compare Seifertet al (1991), Seifert (1997)). The full phase diagram obtained from
simulations of a network ofN = 247 vertices is shown in figure 9.

It is interesting to note that the branched polymer behaviour for small bending rigidity
remains unchanged when the genus of the vesicle is allowed to fluctuate (Jeppesen and
Ipsen 1993).

4.4. Phase behaviour of phantom membranes as a function of the bending rigidity

The behaviour of phantom fluid membranes is quite different from that of self-avoiding
surfaces for very small bending rigidities. Since phantom polymerized membranes are
crumpled, with a radius of gyration which increases only logarithmically with system size
(compare sections 2.1.5 and 3.1.1), it is natural to expect similar behaviour for phantom
fluid membranes; this has indeed been found in simulations (Ambjørnet al 1985, Baillie
et al 1990). However, most simulation results suggest a large butfinite fractal dimension
(Boulatov et al 1986, Billoire and David 1986, M̈unkel and Heermann 1992). In fact,
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Figure 9. The phase diagram of fluid vesicles in the pressure ensemble, as a function of the
reduced volumev = 〈V 〉/V0 and the bending rigidityλb, for N = 247. Compressibility maxima
are shown by a dotted line, the dumb-bell-to-metastable discocyte transition by a dashed line.
From Gompper and Kroll (1995b).

there are strong indications that the scaling properties depend on short-distance properties
of the triangulation and appear to benon-universal(Boulatovet al 1986, Billoire and David
1986). It is tempting to speculate that the finite fractal dimension is due to the contribution
of branched-polymer-like configurations.

A question of particular interest is the phase behaviour as a function of the bending
rigidity (for zero pressure increment). There have been several papers (Catterall 1989,
Baillie et al 1990, 1991, Renken and Kogut 1991b, Bowicket al 1993, Anagnostopouloset
al 1993, Ambjørnet al 1993, 1995b) reporting a phase transition between a low-bending-
rigidity ‘crumpled’ phase and a high-bending-rigidity ‘smooth’ phase for the Gaussian spring
model of non-self-avoiding surfaces. The existence of such a transition was concluded from
a peak in the specific heat, which has been determined to occur atλb = 1.425± 0.010
(Anagnostopouloset al 1993) andλb = 1.50 ± 0.03 (Ambjørn et al 1993) for the
discretization (57) of the bending rigidity, and forτ ' 0.75 (Baillie et al 1990) for the
discretization (63). However, the peak height increases only very slowly with the system
sizeN , and appears to saturate for largeN (Anagnostopouloset al 1993, Ambjørnet al
1993, Münkel and Heermann 1993). The same behaviour was seen in a tether-and-bead
model of self-avoiding surfaces (Kroll and Gompper 1992a).

Several explanations for this peak in the specific heat are possible. First, it could be a
second-order transition with a negative specific-heat exponentα. This is the point of view
taken by Bowicket al (1993), Anagnostopouloset al (1993), and Ambjørnet al (1993).
Second, it has been argued by Kroll and Gompper (1992a) that the peak is due to a finite-
size effect of the persistence length becoming comparable to the system size. In this case,
the peak position should decrease logarithmically withN ; this has been clearly ruled out by
Anagnostopouloset al (1993), who have shown that the peak position approaches a finite
limit for large N . Third, it could be a smooth crossover, as it occurs in two-dimensional
models of Heisenberg ferromagnetism (Polyakov 1986). The surface normal vectors are
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like a spin field, and a crumpled surface is like a Heisenberg paramagnet. The undulations
which destroy long-range order in the surface normals are similar to spin waves (Kantor
and Nelson 1987a). Indeed, the behaviour of the specific heat of the Heisenberg model—in
which the absence of a phase transition can be shown exactly—is very similar to that of
the specific heat of the random-surface models (Anagnostopouloset al 1993).

4.5. Vesicle dynamics

The dynamical behaviour of vesicles in external flow fields and the driven transport of
vesicles through narrow passages are problems of fundamental interest with potential
biological (Lipowsky and Sackmann 1995) and medical applications (Cevcet al 1996).
Vesicle dynamics has been studied in both elongational (Gompper and Kroll 1993, Kroll
and Gompper 1995) and shear (Krauset al 1996) flow fields. In the first case, very-
low-bending-rigidity vesicles (in the branched polymer phase) were considered in the free-
draining approximation. It was shown that there is no sharp crumple–stretch transition (in
analogy to the coil–stretch transition for polymers (de Gennes 1974)); rather, the vesicles
were found to slowly elongate with increasing flow rate until they are completely extended
into long, thin cylinders.

The behaviour in shear flow has been studied in the opposite limit, that of very large
bending rigidity (no thermal fluctuations). Hydrodynamic interactions were included using
an Oseen tensor formalism (Krauset al 1996). Whereas discocytes are stable forv . 0.75
in the absence of flow, the stationary shape of the vesicles was found to be an elongated
ellipsoid for all reduced volumesv = V/V0 > 0.52, even for very small shear ratesγ̇ . The
stationary state of a vesicle in the flow field is characterized by both a finite inclination
angleθ between the longest axis of the vesicle and the flow direction, and a ‘tank-treading’
tangential motion of the membrane with rotation frequencyω. It was shown (Krauset al
1996) that the average reduced rotation frequencyω̄/γ̇ and the inclination angle decrease
with decreasing reduced volumev—with ω̄/γ̇ = 0.5 andθ = π/4 in the spherical limit, in
agreement with results for rigid spheres and fluid drops with infinite surface tension (van
de Ven 1989). Both quantities were found to be independent of the shear rate within the
numerical accuracy.

The driven transport of vesicles through a linear array of narrow pores by the gradient
of an applied (electric or gravitational) field has been studied by Monte Carlo simulations
(Gompper and Kroll 1995a). In the free-draining approximation, the mobility of the vesicles
was found to increase sharply when the strengthf of the driving field exceeded a threshold
valuef ∗. For f > f ∗, the mobility saturates at a value which is essentially independent
of the strength of the driving field. The threshold field strengthf ∗ was found to depends
on pore radiusrp, vesicle areaA, and bending rigidityκ as

f ∗ ∼ κ1+βtA−3/2+ηt r−2ηt
p (74)

with βt ' 0.2 andηt ' 2.4 (Gompper and Kroll 1995a). The strongly non-linear transport
properties of vesicles in this geometry can be understood from the balance of bending and
potential energies. The potential energy dominates for small and large protrusions1z of
the membrane into the pore, while the bending energy dominates for1z of orderrp. This
leads to a nucleation barrier, the height of which is determined by the field strength. In
the zero-temperature limit, the barrier height vanishes atf = f ∗. In this limit, βt = 0 and
ηt ' 1.55 have been obtained from an analysis of the shape equations (Gompper and Kroll
1995a).

The dynamics of phase separation and shape deformation in two-component vesicles
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has been investigated (Taniguchi 1996) by means of a numerical solution of time-dependent
shape equations. The coarsening process of the domain structures was found to be
considerably slower (with an effective dynamic exponentz ' 0.1) than for rigid surfaces
(wherez = 1/3). The phase separation dynamics of a two-component fluid membrane has
also been studied using Monte Carlo methods (Kumar and Rao 1996).

4.6. Stacks of fluid membranes and adhesion

The adhesion/unbinding behaviour of membranes at a planar wall and the strength of
the inter-membrane entropic repulsion in lamellar phases have been two of the principal
questions addressed in the field of membrane physics (Helfrich 1978, Lipowsky and Leibler
1986, Lipowsky and Sackmann 1995, Lipowsky 1995). Monte Carlo simulations of a
tethered membrane near a wall have been used to determine the roughness exponentζ

of polymerized membranes (Leibler and Maggs 1989). Simulations of effective solid-on-
solid models (in which overhangs are ignored) have been employed to study the unbinding
transitions of both single membranes (Lipowsky and Zielinska 1989, Ambjørnet al 1996)
and of bunches of membranes (Cook-Röder and Lipowsky 1992, Netz and Lipowsky 1993,
1995).

Simulations of solid-on-solid models for stacks of several membranes confined between
two hard walls have also been performed in order to determine the universal amplitude
c∞ of the steric interaction between fluctuating membranes (Jankeet al 1989, Gompper
and Kroll 1989). The results are in good agreement with simulation data obtained using
similar models for a stack which is confined by a single wall and an external pressure (Netz
and Lipowsky 1995). The value,c∞ ' 0.11, obtained from these simulations is about a
factor two smaller than the value obtained theoretically by Helfrich (1978) and confirmed
experimentally (Safinyaet al 1986). It is possible that the discrepancy between experimental
and simulation results can be explained by the asymmetry of the ternary system used in the
experiments (Netz 1995).

4.7. Fluid membranes with edges

The survival of cells depends critically on the mechanical stability of lipid bilayer
membranes against rupture. This stability can be explained by the line tension of the
free edge of a bilayer, where the lipid molecules have to adjust to the high local curvature
of the monolayer. The (free) energy of a single hole of areaA and perimeter lengthL in a
membrane with line tensionλe and lateral tensionσ is given by (Litster 1975)

Fhole = λeL− σA. (75)

For a circular hole of radiusr, one hasA = πr2 andL = 2πr. Thus, small holes of radius
r < rc = λe/σ are stable and disappear spontaneously after formation, while large holes of
radiusr > rc grow and rupture the membrane.

The picture presented above ignores the entropic contributions from the fluctuations
of the hole perimeter. For sufficiently large holes, the entropy should be similar to the
entropy of ring polymers, which scales linearly with the polymer length. This leads to a
renormalization of the (effective) line tension,λeff = λe − b, in equation (75), whereb
is a constant of order unity (note thatλe is measured in units ofkBT ). The effective line
tension can become very small or even negative, so holes can form spontaneously even in
membranes without tension (Shillcock and Boal 1996).

Monte Carlo simulations of a tether-and-bead model for fluid membranes with holes
confirm this picture (Shillcock and Boal 1996). Furthermore, they show that for tensionless
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membranes, large holes appear at a reduced line tensionλeσ0 ' 1.24 for tether length
`0 =

√
3. In this case, holes offixedperimeter length show the same scaling behaviour as

self-avoiding random walks. In contrast, holes in membranes under compression scale as
branched polymers. In the case of membranes under tension, no simple scaling behaviour
has been found.

The simulations have also been used to determine the rupture rate for membranes under
tension. The observed dependence of the rupture rate on the line tension follows roughly an
exponential Arrhenius law, with a free-energy barrier intermediate between those of circular
and self-avoiding holes.

The edge tension is also the reason that membranes form vesicles. It is easy to see that
a planar, circular patch of a fluid membrane is energetically unfavourable compared to a
spherical vesicle when the patch radius exceedsr∗ = 4(2κ + κ̄)/λe (Helfrich 1974). The
effect of thermal fluctuations has been studied by Monte Carlo simulations (Boal and Rao
1992b). The transition from open to closed topology is found to persist even in the limit of
vanishing bending rigidity, where it occurs at a reduced tensionλeσ0 of order unity (Boal
and Rao 1992b). The reason is again the extra entropy of the boundary fluctuations.

5. Models of hexatic membranes

The crystalline phase of flat membranes is stable because both the energy and entropy
of dislocations increases logarithmically with system size (Nelson 1983). With increasing
temperature, the free energy of dislocations decreases until there is either a continuous
transition to a hexatic phase with short-range translational but quasi-long-ranged bond-
orientational order or a first-order transition directly to the fluid phase. This situation
changes when the membrane is allowed to buckle out of the plane (Nelson 1996). Seung
and Nelson (1988) have shown—by minimizing the energy of a dislocation in a network
model of elastic springs—that the energy of dislocations is so reduced by buckling that their
energy grows sub-logarithmically with system size. Free dislocations are therefore expected
to be present at any finite temperature, destroying the crystalline order.

0
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0 0.004 0.012 0.0160.008
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1/(Κ0 <   >2 )

Figure 10. The phase diagram in the (1/κ–1/[K0〈`〉2]) plane, whereK0 is the Young modulus
of a polymerized membrane of the same tether length, and〈`〉 ' (1+ `0)/2 is the average
nearest-neighbour distance. From Gompper and Kroll (1997).
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This picture has been confirmed recently by a Monte Carlo simulation of the tether-
and-bead model (Gompper and Kroll 1997). In this model, crystalline order is induced by
reducing the tether length̀0. The theoretical prediction for the hexatic phase diagram in
the (1/κ–1/KH ) plane is shown in figure 2. Because there are as yet no good simulation
estimates for the hexatic stiffness,KH , the phase diagram obtained from simulations is
plotted in the (1/κ–1/[K0〈`〉2]) plane in figure 10, where〈`〉 is the average nearest-
neighbour distance, and the fit (Gompper and Kroll 1997)

K0 = 11.33(`0− 1)−2

[
1− 2.1

(
`0− 1

`0+ 1

)2
]

(76)

has been used for the Young modulus,K0, of the planar network. A hexatic phase is found
for small tether length and sufficiently large bending rigiditiesκ & 1, in agreement with the
predictions of Seung and Nelson (1988). A phase transition to a fluid phase occurs either
with increasing tether length or with decreasing bending rigidity, in qualitative agreement
with analytic results of Guitter and Kardar (1990) and Park and Lubensky (1996c).

6. Heterogeneous polymer–fluid networks

Heterogeneous membranes, which are composite fluid-polymerized networks, have unusual
elastic properties. A prominent example of this type of network is the cell membrane of
mammalian red blood cells (Elgsaeteret al 1986, Steck 1989). This membrane consists of
a lipid bilayer with an attached quasi-hexagonal network of spectrin tetramers. The lipid
membrane provides a large area compression modulus and a high flexibility to bending
deformations, while the polymer network provides the stiffness required to recover the
biconcave equilibrium shape of the red blood cell after being squeezed through narrow
capillaries of only a third of their size. Other examples of heterogeneous networks are
partially polymerized sheets of certain phospholipid molecules (Sackmannet al 1985).

Several models have been used for the simulations of fluid membranes with attached
polymer networks. The first study of this problem (Boalet al 1992) employs the model
of fluid membranes described in section 4.1. In addition to the ‘fluid’ tethers, a second
set of connections is introduced on a small subset of vertices (one in every 36), which
form a hexagonal network of fixed connectivity. These ‘spectrin’ tethers have a maximum
length smax , which is the main model parameter. Spectrin tethers are allowed to intersect,
as they only represent the in-plane projections of the three-dimensional polymer chains.
Monte Carlo simulations of this model show (Boalet al 1992) that the dimensionless area
compression modulusKAσ 2

0 decreases with increasingsmax , but quickly reaches a plateau for
smax & 8σ0. The area compression modulus for largesmax is therefore mainly determined by
the fluid component. The shear modulus, on the other hand, is found to decrease rapidly with
increasingsmax ; it is determined by the polymer network. Furthermore, the Poisson ratioσP
of the spectrin network was shown to benegative. Such materials expand transversely when
stretched longitudinally. Note that no out-of-plane fluctuations of the membrane are taken
into account in this model. Thus, the physical mechanism forσP < 0 must bedifferent
from the case discussed in sections 2.1.8 and 3.2.1 above.

To get more insight into this unexpected result, a simplified model has been considered
(Boal et al 1993). In this case, the fluid component is not taken into account explicitly, but
only via a lateral tension on the spectrin network which determines the average area per
vertex. The interaction was taken to be either a square-well potential or Hookean springs,
and both self-avoiding and phantom membranes were examined. In all of these cases, a
negativePoisson ratio was found over some range of the lateral tension.
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Finally, the polymeric nature of the spectrin network has been taken into account
explicitly (Boal 1994). In this case, the bonds in the hexagonal network are replaced
by short polymer chains, with chain lengths in the range 4–30 (compare section 3.2.3). The
midpoint of each chain is then constrained to move in a plane which represents the bilayer.
This plane acts as a repulsive hard wall to all other segments. This model has been used to
calculate the elastic moduli of red-blood-cell membranes (Boal 1994).

Networks, in which a fractionp of randomly selected bonds are polymerized, have also
been studied (Boal 1993). It is found that the area compression modulusKA is essentially
independent of the polymer fractionp. On the other hand, the shear modulus vanishes
below the percolation thresholdpc, and increases roughly linearly withp for p > pc.

7. Plaquette and triangular lattice models

7.1. Plaquette models

Plaquette models are surfaces which are composed of connected faces of elementary cells
of a cubic lattice. The surface can be defined, for example, by introducing a spin variable
si ∈ {−1, 1} in each cell. The surface is then given by those faces which separate cells of
opposite spin. Such plaquette surfaces are always closed. However, open surfaces can also
be studied by using other variables to describe the surface positions. Self-intersections are
possible on a simple cubic lattice—although they can be avoided by introducing extra terms
in the Hamiltonian, of course—but do not occur on a body-centred cubic lattice (Dotsenkoet
al 1993). Plaquette models have been investigated with bending rigidity, i.e. with an energy
contribution which favours the parallel alignment of neighbouring plaquettes. However, it
should be emphasized that it is extremely difficult to discretize the squared mean curvature
on a lattice correctly. The scale invariance of the curvature Hamiltonian is therefore usually
broken in plaquette models (Likoset al 1995).

Surfaces on cubic lattices are outside of the main focus of this review. The most
important theoretical results concerning lattice plaquette models are reviewed by Fröhlich
(1985). We want to provide here only a short summary of relevant simulation results.
Vesicles and open membranes without bending rigidity have been studied in considerable
detail. The most detailed investigations of branched polymer behaviour have been performed
with the use of plaquette models (Glaus 1986, 1988, O’Connellet al 1991, Baumg̈artner
and Renz 1992). Vesicles with fluctuating genus have also been considered. It has been
shown (Stellaet al 1992) that the fluctuating topology does not change the universality
class, in agreement with the result of network models mentioned above. This corrects
earlier results in which a different scaling behaviour had been observed (Banavaret al
1991). Several simulations of lattice vesicles with a pressure difference between inside and
outside (Orlandini and Tesi 1992, Baumgärtner 1992) or with constant enclosed volume
(Baumg̈artner 1993b) have been carried out. The results are similar to those obtained from
network models; compare section 4.3 above. However, the transition pressurep∗ of the
branched-to-inflated transition was found to scale asN−ζ+ with ζ+ = 1, in contrast to
ζ+ 6 0.7 for network models (compare section 4.3).

The main disadvantage of plaquette models is that the bending energy cannot easily
be discretized on a cubic lattice. This can be seen most easily by considering the scale
invariance of the continuum curvature Hamiltonian: the curvature energy of a sphere is
4π(2κ + κ̄), independentof the vesicle radius. All naive discretizations on cubic lattices,
where the analogue of a sphere is a cube, lead to alinear dependence of the discretized
curvature energy on the cube size (Likoset al 1995). Thus, the results for plaquette models



Network models of fluid, hexatic and polymerized membranes 8829

for large bending rigidities (Baumgärtner 1993a, Orlandiniet al 1996) have to be interpreted
very carefully.

Finally we want to mention the study of vesicle adsorption in the case of zero bending
rigidity (Orlandini et al 1993).

7.2. Folding transitions

A very simple model ind = 2 dimensions which has some of the properties of tethered
networks has been suggested by David and Guitter (1988). It was originally formulated
on a square lattice. The elementary squares of the lattice are rigid, so the only degrees of
freedom are folds along the lines of the lattice. They showed that the entropy of this model
is not extensive, so for any finite bending energy, the surface is flat, withdf = 2. There
is a folding transition at zero bending rigidity, where the surface has the fractal dimension
df = 4. A similar model on a triangular lattice exhibits more interesting behaviour (Kantor
and Jaríc 1990, Di Francesco and Guitter 1994a, b). In particular, the entropy per site is
finite (Kantor and Jarić 1990, Di Francesco and Guitter 1994a), and there is a first-order
folding transition at a finite value of the bending rigidity (Di Francesco and Guitter 1994b).
This folding transition is closely related to the crumpling transition ind = 2 dimensions
studied by Renken and Kogut (1991a) (see section 3.2.2); the only difference between the
models is that in the present case, the sides of the elementary triangles have fixed length,
while in the model considered by Renken and Kogut (1991a), they are allowed to fluctuate.
Bowick et al (1995) have determined the folding entropy per surface triangle for a model
of three-dimensional folding, where folds are allowed to be either planar or form the angles
of a regular octahedron. Di Francescoet al (1997) have used the cluster variation method
to determine the folding phase diagram of the regular triangular lattice in the presence of
a quenched random bending rigidity±κ and magnetic field conjugate to the local normal
vectors of the surface triangles. Folding of the triangular lattice in three dimensions with
negativebending rigidity (Bowicket al 1997), and of the square lattice in two dimensions
with bending rigidity and attractive or repulsive interactions (Mori and Kajinaga 1996) has
also been studied.

8. Outlook

There has been enormous progress in the understanding of the thermal behaviour of simple,
one-component membranes over the last few years. This is due, in part, to the fruitful
interaction between theory and computer simulations.

Nevertheless, several questions require further analysis. We give just a few examples.
First, the existence of a crumpled phase forpolymerized, self-avoiding membranes with
attractive interactions has to be demonstrated more convincingly. Also, the dependence of
the stability of a crumpled phase on the range and strength of the attractive interaction has to
be investigated systematically. Second, the effect of the boundary fluctuations (Abraham and
Nelson 1990b, Gompper and Kroll 1992a) on polymerized membranes with free edges has
to be better understood, since the origin of the small but significant difference between the
values for the exponentsζ andη obtained from simulations of open and closed membranes
still remains unclear. Third, forfluid membranes, the existence of a phase transition with
increasing bending rigidity is still unclear. The existence of such a transition would have
important consequences for the renormalization of the bending rigidity, since it would
indicate that the softening of the membrane by thermal fluctuations has to change into a
stiffening at very large length scales (Bowicket al 1993). Finally, the scaling behaviour of
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low-bending-rigidity vesicles at the branched-to-inflated transition has to be investigated in
more detail.

With the behaviour of simple systems now relatively well understood, simulation
methods will certainly be applied in the near future to more complex systems. The
simulation of membranes of fluctuating topology, for example, will help to answer many
important questions, such as the form of the vesicle size distribution (Morse and Milner
1995), the shape of the lamellar-to-sponge phase boundary (Morse 1994, Golubovic̆ 1994),
and the density of passages in the lamellar phase (Golubovic̆ 1994, Gompper and Goos
1995). In particular, this should give access to the renormalization of the saddle-splay
modulus. The thermal behaviour of heterogeneous membranes, such as membranes
composed of two lipid components, membranes decorated with anchored polymers, or
membranes with embedded proteins, plays an important role in all biomembranes (Lipowsky
1995, Goulian 1995, Lasic and Papahadjopoulos 1995). Simulations will be an important
tool in efforts to understand the interplay between shape and aggregation, which plays an
essential role in the biological functioning of a membrane.
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